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Abstract

Optimizing the performance of dynamic load balancing
toolkits and applications requires the adjustment of several
runtime parameters; however, determining sufficiently good
values for these parameters through repeated experimenta-
tion can be an expensive and prohibitive process. We de-
scribe an analytic modeling method which allows develop-
ers to study and optimize adaptive application performance
in the presence of dynamic load balancing. To aid tractibil-
ity, we first derive a ““bi-modal’ step function which simpli-
fies and approximates task execution behavior. This allows
for the creation of an analytic modeling function which cap-
tures the dynamic behavior of adaptive and asynchronous
applications, enabling accurate predictions of runtime per-
formance. We validate our technique using synthetic micro-
benchmarks and a parallel mesh generation application
and demonstrate that this technique, when used in conjunc-
tion with the PREMA runtime toolkit, can offer users signif-
icant performance improvements over several well-known
load balancing tools used in practice today.

1. Introduction

Although many techniques have been developed for the
load balancing of loosely synchronous parallel applica-
tions, providing such support for asynchronous and adap-
tive codes is still an open problem. In response, we have
developed the Parallel Runtime Environment for Multi-
computer Applications (PREMA) [4, 3], a mid-level soft-
ware toolkit for the dynamic load balancing of this chal-
lenging class of applications. However, in order to make
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the most effective use of the runtime software, and sub-
sequently maximize the utilization of computational re-
sources, certain parameters governing PREMA’s execution
must be set off-line. While optimal values for these vari-
ables can be determined through repeated executions of the
target application, such a procedure is time-consuming, po-
tentially expensive, and often prohibitive for large systems
and applications. We present an analytic model that allows
the user, given a set of assumptions such as communica-
tion latency and coarse bounds to task execution times, to
quickly predict application performance for codes built us-
ing the PREMA library. With this tool, developers can fine-
tune the performance of applications built using PREMA in
an inexpensive, off-line manner.

However, accurately modeling the dynamic load balanc-
ing behavior of a given set of tasks is a difficult problem.
Therefore, we define an approximate problem, using a “bi-
modal” task distribution, which serves as an accurate ab-
straction of the original task set. This approximation con-
sists of only two task types and can therefore be tackled an-
alytically.

Once an appropriate bi-modal approximation is derived,
the modeling technique described can be used to estimate
upper and lower bounds on an application’s runtime in the
presence of dynamic load balancing. After validating the
model’s accuracy, we conduct a parametric study to quanti-
tatively analyze the impact of two important runtime param-
eters: task granularity (or level of over-decomposition) and
the preemption quantum, or interval after which the run-
time system will preempt ongoing computation to receive
and process load balancing messages. Both parameters rep-
resent a tradeoff between system and communication in-
duced overhead and load balancing flexibility. We demon-
strate that the PREMA software, in conjunction with the an-
alytic modeling capability provided by this technique, will
allow users to easily configure parallel applications that are
capable of out-performing codes using other load balanc-



ing tools available to the community.

2. PREM A Runtime Environment

The modeling technique we present is designed to pre-
dict the performance of applications utilizing the dynamic
load balancing capability of the PREMA runtime environ-
ment; therefore, a brief description of PREMA is warranted.
Applications begin by decomposing the data domain into
mobile objects, which are registered with the runtime sys-
tem. Choosing a greater number of mobile objects than
available processors is referred to as over-decomposition; a
greater degree of over-decomposition will allow for more
load balancing flexibility at the cost of some overhead.
Computation is invoked via mobile messages, which are ad-
dressed to mobile objects themselves, not to the processors
on which the objects reside. This allows mobile objects to
migrate from processor to processor without needing to ex-
plicitly notify the application; the PREMA runtime system
is responsible for efficiently routing messages to their cor-
rect destinations. As mobile objects migrate between pro-
cessors, any pending computation moves as well; mobile
objects are therefore the units of load balancing granularity.
Migrating data thereby implicitly migrates computation.

PREMA provides a load balancing framework through
which a wide variety of load balancing algorithms may
be implemented. In a typical policy, such as the Diffu-
sion [11, 2] method, load balancing begins when a pro-
cessor’s local work load falls below a pre-defined thresh-
old. Requests for tasks are sent to neighboring processors;
if a neighbor has a sufficient number of tasks (mobile ob-
jects with pending computation) available, one will be unin-
stalled and migrated to the requesting processor.

Each processor executes both the application thread
and a separate polling thread, whose job is to periodically
awaken and probe the network for load balancing requests.
The quantum, or period of time between thread awaken-
ings, can be set by the user but remains static throughout
the application’s execution. By handling load balancing re-
quests within a seperate thread, PREMA is able to dra-
matically shorten the delay between migration request
and response, relative to single-threaded load balancing li-
braries, and thereby decrease the number of idle cycles and
application execution time.

3. Approximation of Task Execution Times

Accurately modeling a general distribution of task
weights is a challenging problem. To simplify it and
make the problem tractible, we model the estimated
task cost function (task_weight = f(task_id)) us-
ing a bi-modal (or step) function that defines two classes
of equally weighted tasks. Sorting tasks in terms of

their weights into a monotonically increasing order al-
lows us to define a parameter Gamma (I") which divides
the task pool into heavier tasks, which are termed Al-
pha (), and lighter tasks, which are termed Beta (3). Be-
cause the applications we target are adaptive, precise task
weights are not always known in advance. Therefore, ap-
proximate weights can be used as inputs to the model; how-
ever, the more accurately task weights are known, the more
accurate the model’s predictions will be.

We are able to define a unique approximation function
using the following two criteria:

1. The area under the step function must be equal to the
area under the curve defined by the original cost func-
tion. This is equivalent to stating that the amount of
computation invoked by the tasks in the original cost
function must equal the computation invoked by the
approximation model.

2. The computational complexity of the tasks contained
within the « and /3 approximation classes must “ac-
curately” reflect the weights of the tasks in the origi-
nal cost function (we define this precisely below). This
ensures that the model accurately predicts the time at
which load balancing begins and the amount of com-
putation migrated during each load balancing opera-

tion.
N
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For a given selection of T, there are unique values of «
and (3 task execution times (T _tqsk and Tis_¢qs%) that sat-
isfy Equations 1, 2, and 3 (in which T; is the computational
weight, or time required by task 4, and N is the number
of tasks). The selection of I", from the IV possible choices,
is determined from the second criterion. A unique I" min-
imizes the sum of Error, and Errorg, defined by Equa-
tions 4 and 5. Each error term is a measure of the accuracy
(as in least-square approximation [14]) in which the selec-
tion of the approximation task weights represents the origi-
nal cost function.

Error, =

Z (Ta_task — Ti)2 @)

1 Inthecaseinwhichall tasksare of equal weight, I" isnot unique; how-
ever this case requires no load balancing and so is not considered fur-
ther.
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4. Analytic Modeling for Diffusion Load Bal-
ancing

We next apply our modeling technique to the Diffu-
sion [11, 2] load balancing method, which can be trivially
extended to include the Work-stealing [2] method. In our
research, we have found these two methods to be the most
generally applicable to a wide variety of problem types.

Our approach is to model the runtime of the slowest pro-
cessor (which we term the dominating processor), as this
will determine the overall runtime of the parallel applica-
tion. Computation will progress with each processor con-
suming its initially allocated tasks. The processors initially
assigned G tasks will finish their computation first, at which
point they begin requesting tasks from other processors.
The polling thread, incorporated into the architecture of the
PREMA runtime system, will awaken on each processor af-
ter a specified quantum of time in order to process any pend-
ing load balancing requests. If a request is received and suf-
ficient tasks are currently in the local work pool, an « task
which has not yet begun execution will be migrated to the
requesting processor.

b
Ttotal - Twork + Tthread + ng)ﬂ%m + Tcomm + (6)
lb lb
Tmigr + Tdecision - Toverlap

Once the requisite task partitioning information is de-
fined, Equation 6 is used to predict application runtime. It
provides a model of runtime on a single processor com-
posed of computation invoked by application tasks, runtime
system overhead, communication, and task migration. Eval-
uating Equation 6 from the point of view of initially over-
loaded (o) and initially underloaded (3) processors allows
us to determine the dominating processor type, and hence
overall run time.

4.1. Computation Component

The Torr term of Equation 6 encompasses the amount
of time attributable to task execution on a single proces-
sor, taking into consideration task migration due to dynamic
load balancing. Load balancing will begin once all 3 tasks
have completed, at time 73 = % X T3_tast; (OUr model
assumes that each of P processors is initially assigned an
equal fraction of the IV tasks). At this point, a suitable task
for migration must be located; inquiries are sent to an evolv-
ing set of neighboring processors until an « task is found. In

the best case, this will require a single request. In the worst

case, all comparably underloaded nodes will be probed be-
fore a suitable task is located?. For simplicity, we use the
term Tj,.qse t0 describe the time required for task location;
the time required for each migration request is defined in
Section 4.4.

Once T} is known, the next step is to calculate the num-
ber of tasks potentially available for migration. We define
T, = % X Tw_task t0 be the time required to complete all
« tasks, barring migration. This enables the specification of
Ta =Ty —Ts —Tiocate, Which defines the amount of work
available for migration. The number of tasks available for
load balancing can be calculated from T'a and T}, _;4s%. Be-
cause of the upper and lower bounds on T4, there will
be upper and lower bounds on the number of migratable
tasks, and therefore bounds on the application’s execution
time.

To calculate the number of task migrations, we first de-
termine the number of load balancing iterations that are re-
quired before all tasks are complete. We define IV, and Ng
to be the number of processors initially assigned « and g
tasks, respectively. Assuming each processor consumes a
single task per iteration, the number of tasks consumed by
an overloaded processor per round (after time T’g) is given
by |Ng/Nq| + 1, or the number of tasks donated to load
balancing plus the one task consumed by the processor it-
self. The upper bound on the number of load balancing iter-
ations is determined by subtracting the number of migrated
tasks from the number of initially allocated tasks. This, in
turn, is used to compute an upper bound on the execution
time of the dominating processor. A similar procedure is
used to calculate T, for an initially underloaded proces-
sor.

4.2. Preemptive Polling Thread Component

PREMA’s preemptive polling thread adds a fixed per-
centage of overhead to each task. Tyqantum Oefines the pe-
riod after which the polling thread will awaken, and is input
to the model. Another input, T,.;; is the amount of time re-
quired to complete a single polling operation, and is inde-
pendent of T}, qntum. With this information, the overhead
attributable to the polling thread (T3p,cqq) 1S Specified as
the number of thread invocations during a period of work
(Twork /Tquantum) Multiplied by the overhead per thread
invocation (2 X Tty 4+ Tporr, Where Tey, is the time required
for a thread context switch).

2 Dueto the unpredictable nature of adaptive codes, neither the runtime
system nor the application knows the location of particular tasksin ad-
vance.



4.3. Application Communication Component

The T2rp ~ component describes the cost of inter-
processor communication invoked by the application it-
self. The number and size of messages sent by each
task are fixed and input to the model. Message pass-
ing (for both the application and runtime system) are mod-
eled as a startup cost plus a cost per byte, which are also
parameters of the model. Although we do not overlap com-
munication operations, it would be trivial to do so. We also
assume there is no overlapping of computation with com-
munication since we are interested in computing an upper
bound on T22% .

The communication cost per task is defined as the
cost per message multiplied by the number of mes-
sages a task sends. The total application communica-
tion cost is the single-task messaging cost multiplied by
the number of tasks on a particular processor. Note that the
number of tasks per processor will deviate from the ini-
tial assignments due to load balancing, as described in
Section 4.1.

4.4. Load Balancing Communication Component

T . defines the cost of information gathering during
load balancing. With the Diffusion load balancing method,
underloaded processors will send a message to each pro-
cessor in the local neighborhood, requesting the number of
tasks available for migration. If no tasks are available, new
neighbors are selected and the process is repeated. Because
it is not possible to predict the number of unsuccessful re-
quests, the number of migratable tasks will serve as an op-
timistic lower bound.

In the case of a sink processor (one that receives tasks
during load balancing), the time to request information from
neighboring nodes can be expressed as the number of neigh-
bors multiplied by the cost of sending a single request. This
can be trivially altered in the case in which communication
operations may be overlapped. The load balancing commu-
nication cost per task migration can then be expressed as the
sum of the time to send a request (formulated using the lin-
ear message cost model previously described), the expected
time on the receiver before the preemptive polling thread
awakens to process the request (Tyuantum/2), the time to
process the request (which is input to the model), the time to
send a reply (again using the linear messaging cost model),
and the time to process the reply on the originating pro-
cessor (an input to the model). These times constitute the
“turn-around” time for a load balancing message and will
be dominated by the preemptive polling thread’s quantum.
The quantum therefore represents a tradeoff: a shorter quan-
tum reduces the turn-around time but adds to the overhead
incurred by the runtime system.

In the case of Diffusion load balancing, no information is
gathered by the source processors, so this term contributes
nothing to the predicted execution time.

4.5, Load Balancing Migration Component

The 7%, . term of Equation 6 represents the time re-
quired for task migration, and can be broken into the cost
of moving a task to a processor and the cost of receiving
a task from a processor. Initially overloaded processors are
charged with the cost of uninstalling, packing, and trans-
porting a task. Conversely, initially underloaded processors
must unpack and install the migrated tasks.

The costs associated with packing, unpacking, installing,
and uninstalling tasks are measured quantities and are pro-
vided as inputs to the model. The cost of message passing
is calculated using the linear cost model described previ-
ously.

4.6. Migration Decision Making Component

The T%b ..., term of Equation 6 represents the time re-
quired for the load balancing scheduling software to select
a partner processor once it has received replies to all neigh-
borhood information queries. This is a measured quantity
which is input to the model and dependent on the schedul-
ing policy used. For this paper, we have measured the time
required by the Diffusion scheduling policy to be approxi-
mately 0.0001 sec. on a 333 MHz UltraSPARC Ili proces-
sor.

4.7. Overlap Between Components

Certain system architectures offer the capability to over-
lap components of the runtime model. For instance, it may
be possible to off-load communication to a separate proces-
sor which manages the network interface. Another exam-
ple is a multi-processor machine on which the preemptive
PREMA polling thread may be allocated to a separate pro-
cessor from the primary application.

In such a case, this overlap must be removed from the
overall predicted runtime. However, on the system on which
our experiments were conducted, overlap was not possible.

5. Validation of the Analytic Model

We validate the accuracy of our analytic model using
both a benchmark program and an implementation of a
2D Parallel Constrained Delaunay Triangulation (PCDT)
mesh refinement algorithm. We present results from three
tests using the benchmark program. In the first, task execu-
tion times vary linearly from a minimum value to a max-
imum of twice the minimum (linear-2 test). In the sec-
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Figure 1. Comparison between measured benchmark run times and model predictions for 32 ((a)—(c))
and 64 ((d)—(f)) processors, and PCDT applications on 32 and 64 processors.

ond, the maximum value is a factor of four times the mini-
mum (linear-4 test). In the third, 25% of the tasks have the
heavier weight and require double the computation time of
the remaining 75% (step test). Such a benchmark (which
does not incorporate inter-task communication) is repre-
sentative of a 3D Parallel Advancing Front (PAFT) mesh
generation and refinement application [8] developed within
our research group. PAFT begins by partitioning a 3D do-
main into sub-domains and constructing triangular surface
meshes for each, ensuring that the surface meshes are con-
sistent between neighboring regions. Tetrahedralization can
then progress in each sub-domain independently, with no
communication required until the global mesh is reassem-
bled before termination of the PAFT. Load imbalance arises
due to varying complexity of sub-domain geometry, or the
existence of “features of interest” which require mesh re-
finement to a higher degree of fidelity.

Figure 1 contains the results of all three tests (linear-2,
linear-4, and step) on 32 and 64 homogeneous processors®.
In each test, the granularity of the task decomposition varies
with the number of tasks allocated to each processor (from
2 to 16). Each graph displays the measured program execu-
tion time, along with an upper bound, lower bound, and av-
erage prediction generated by the analytic model.

Our test platform consisted of 64 single-CPU (333 MHz) Sun Ultra5
workstations with 256 MByte local memory and connected with 100
Mbit fast ethernet. The communication infrastructure on which the
PREMA runtime environment was built consisted of the LAM imple-
mentation of MPI. The cluster is utilized in single-user mode through
the PBS batch system; our application did not have to contend with
other applications for resources.

The average prediction for the linear-2 and linear-4 tests
differ from the measured run times by 4% or less on both
32 and 64 processors, while the error increases to roughly
10% in the case of the step test. This discrepancy can be
explained by the smaller total execution time, and the ex-
istence of a few outlying points. For longer running pro-
grams, the error percentage decreases; this is desirable as it
is these long running applications in which we are most in-
terested.

Modeling the PCDT program is challenging for two rea-
sons. First, the load imbalance is generated by a non-linear
“heavy-tailed” task distribution. Second, tasks communi-
cate with one another during runtime, and this behavior
must be captured by the model. Figure 1(g) and Figure 1(h)
indicate the effectiveness of the model on 32 and 64 proces-
sors, with an average error on 32 processors of 3.2%. On 64
processors this figure increases slightly to 6%.

6. Parametric Studies

The validated analytic model can be used to study the im-
pact certain runtime parameters have on load balancing and
application performance. The specific variables in which we
are interested include the preemption quantum, number of
processors, task granularity, load balancing neighborhood
size, and communication latency. We begin with a look at
applications exhibiting a simple bi-modal imbalance, and
progress to more complex applications with a linear imbal-
ance and inter-task communication. Finally, we will exam-
ine the effect of communication latency.
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Figure 2. Bi-modal imbalance predictions on 32 (top row), 64 (middle row), and 256 (bottom row) pro-

cessors.

6.1. Bi-modal Imbalance

Applications exhibiting bi-modal imbalance are com-
posed of two task types. For this benchmark, heavy tasks
make up 50% of the task count, and the variance, or dif-
ference in execution time between heavy and light tasks is
specified at execution time. We first study how task gran-
ularity, or level of over-decomposition, affects overall run-
time (Figure 2, column 1). Initially, increasing the number
of tasks leads to a decrease in overall runtime as the load
balancer has a greater deal of flexibility in task migration.
A dampening periodic behavior can be seen as the num-
ber of tasks increases. The period of this effect depends on
both the number of processors and the initial level of im-
balance, and results from a situation in which the smoothest
possible load distribution creates a workload difference be-
tween processors of almost an entire task. Further over-
decomposition eliminates this effect by breaking the orig-
inal task into pieces, each of which may migrate indepen-
dently.

Our next experiment studies the effect the preemption

guantum has on total execution time. Figure 2 (columns 2
and 3) indicates there is a range of values that will minimize
run times. Quanta values which are too small lead to exces-
sive polling thread overhead, while those that are too large
cause lengthly delay in load balancing response time. In the
case of large processor configurations and large task vari-
ance (Figure 2(k)), the range of optimal quanta values is
quite small.

Finally, in Figure 2 column 4, we examine the impact
of load balancing neighborhood size (the neighborhood de-
fines the set of processors with whom load balancing infor-
mation is exchanged). As the number of processors grows,
the time required to probe all processors for tasks also in-
creases. As a result, some tasks that are candidates for mi-
gration may not be located, and thus load balancing effi-
ciency degrades. Increasing the number of neighbors can
overcome this problem (Figure 2(1)). However, for small
processor configurations, this is of little benefit.
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Figure 3. Linear imbalance data on 64 (top row), 256 (middle row), and 512 (bottom row) processors.

6.2. Linear Imbalance

In our second set of experiments, we study a more com-
plex application type in which task weights are distributed
linearly over one of three ranges. Mild imbalance varies task
execution times over a range in which the heaviest tasks re-
quire 20% more time than the lightest ones. With moderate
imbalance, heavy tasks are twice as costly as the lightest
ones, while severe imbalance increases the range to a fac-
tor of four. Secondly, each task has four “neighbors” with
whom it communicates during its execution. This is a com-
mon communication pattern when, for instance, processors
are arranged in a logical 2D grid.

The effect of over-decomposition is shown in Fig-
ure 3, column 1. In this case, the flexibility given to the
load balancer by a fine task granularity is in tension with
the greater amount of required inter-task communica-
tion. This tension will eventually penalize greater levels of
over-decomposition, particularly in the case of a mild ini-
tial imbalance. In the cases of moderate and severe initial

imbalance, load balancing will produce a minimum exe-
cution time, after which point further over-decomposition
increases application run time.

The impact of the preemption quantum (Figure 3, col-
umn 2) indicates, as before, there is an optimal range of
guantum values which lead to a minimum execution time.
The size of this optimal range tends to decrease as the num-
ber of processors grows. Repeating the same experiment
with various levels of initial imbalance (Figure 3, column 3)
indicates that this range remains roughly constant, regard-
less of the degree of imbalance. However, a finer task gran-
ularity allows the load balancer to be more tolerant of larger
guantum values.

Lastly, we examine the impact of neighborhood size, and
see that the results are consistent with observations derived
from experiments with a bi-modal initial imbalance (Fig-
ure 3, column 4).



7. PREMA L oad Balancing Performance

The power of the analytic model’s predictive capability
lies in its ability to generate optimal values for the config-
uration of the PREMA runtime software. Comparisons be-
tween PREMA and prevalent load balancing tools found in
the research community demonstrate performance improve-
ments on a set of synthetic micro-benchmarks. While we
were able to configure PREMA off-line using the analytic
modeling technique we have described, obtaining optimal
results with other tools required trial-and-error experimen-
tation and repeated benchmark runs.

As a basis for the evaluation of PREMA’s runtime ef-
ficiency, we present the results from three software tools
widely used by the research community: the Metis [18] li-
brary of repartitioning tools, the iterative load balancers
incorporated in to the Charm++ library [16, 17], and
Charm++’s seed-based load balancers [5]. The first two
are designed for load balancing loosely synchronous ap-
plications; by comparing their performance with that of
the PREMA system, we demonstrate that the loosely syn-
chronous model is not appropriate for efficiently support-
ing asynchronous applications. The seed-based balancers
that are part of the Charm++ runtime library are them-
selves asynchronous, and therefore serve as a basis for
evaluating the efficiency of our software implementa-
tion.

The benchmark program creates a set of discrete tasks
that do not communicate during their execution, similar
to the PAFT application described in Section 5. A heavy
weight is assigned to 10% of the tasks, and a lighter weight
(half of the heavy) to the remaining 90%. We have used
predictions generated from our model to set the number of
tasks per processor to 8, and the preemption quantum to 0.5
seconds. While a more even load diffusion is possible with
a finer task granularity, the predictions generated from the
model indicate that this will not lead to significant improve-
ment in overall run time.

Figure 4 contains the results of our experiments run on
64 processors. Compared with no load balancing, PREMA
provides an overall performance improvement of 38% (Fig-
ures 4 (a) and (b)). When using Metis, processors must
synchronize in order to calculate a new partitioning. The
benchmark program refrains from synchronization until a
particular processor’s local load level drops below a pre-
defined threshold?, at which point a synchronization request
is broadcast to all processors. This message may arrive dur-
ing the processing of a task, in which case it will not be pro-
cessed until the task is complete. Due to this synchroniza-
tion overhead imposed by Metis, PREMA is able to provide
a performance improvement of 40%. However, when the

4 Thethreshold for all load balancing methodsis identical.

percentage of “heavy” tasks increases from 10% to 25%,
Metis is able to more evenly distribute the load. Synchro-
nization overhead associated with Metis still imposes a sig-
nificant penalty, and PREMA is able to provide a 39% per-
formance improvement.

PREMA provides a similar improvement over
the loosely synchronous load balancing provided by
Charm++’s iterative balancers (Figure 4(f)), which syn-
chronize processors after a certain number of tasks have
been executed. Using measurements taken during the previ-
ous iteration, tasks may be migrated under the assumption
that computation in the next iteration will proceed in a sim-
ilar fashion. Experimentally, we have found that four
load balancing iterations provide the best trade-off be-
tween load balancing quality and synchronization overhead.
However, even in this case PREMA provides a runtime im-
provement of 41%.

A more interesting case is Charm++’s asynchronous,
seed-based balancing capability (Figure 4(g)). We can see
that this method is more successful than either loosely syn-
chronous method at distributing the work load. However,
the number of idle cycles on each processor are evidence
of overhead incurred by the runtime system. As a result,
PREMA is able to provide a performance improvement of
20%.

Lastly, we have conducted an experiment in which the
analytic model is used in conjunction with the PREMA soft-
ware to tune the performance of a Parallel Constrained De-
launay Triangulation (PCDT) [9, 10] program. On 64 pro-
cessors, the model predicted a performance improvement
of 3.6% would be possible with a task granularity of 16 ver-
sus 8 tasks per processor. In our experiments, we observed
a performance improvement of 3.4%, with our predictions
differing from the measured execution time by 2%. In Fig-
ure 4, we present our results using the finer task granular-
ity.

In Figure 4 (c) and (d), we show that PREMA is able
to provide an improvement in execution time of 19% over
no load balancing. Although we do not have the resources
to implement the PCDT application using all four load bal-
ancing toolkits, we see that our results with PREMA are
consistent with our observations in the previous set of ex-
periments using a synthetic microbenchmark.

8. Related Work

The modeling of dynamic load balancing schemes is typ-
ically based on one of four methods. The first requires ap-
plications to conform to a well-understood parallel comput-
ing model, such as Bulk Synchronous Processing (BSP) [7].
The work by Nyland, et al. [23] is one such example, in
which the BSP model is used to estimate the costs of spatial
decomposition algorithms in the context of Molecular Dy-
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Figure 4. Benchmark and PCDT performance on 64 processors

namics codes. However, the irregular applications in which
we are interested are not made up of distinct phases of com-
putation, and therefore do not conform to these models,
making other techniques necessary.

The second category involves simulation. In [25], the au-
thors use a workload generator to compare the performance
of different load balancing techniques. The authors of [1]
use a large simulation data set to train a neural network
which predicts load balancing performance under various
system parameters (time to transfer a task, time to gather
load balancing information, and time to exchange load in-
formation between nodes).

A third group of research uses queueing theory or Petri
nets to perform analyses. Some examples can be found
in [6, 22, 13]. Such work may address topics in which
we are also interested, such as the impact of communica-
tion latency on load balancing, comparison between static
and dynamic load balancing policies, and the assignment of
tasks to processing elements. However, the computational
requirements for solving the potentially large systems of
equations associated with the underlying Markovian pro-
cesses make this approach less practical for the type of
large-scale parametric studies we wish to undertake. In ad-
dition, as one of the future goals of our research is to im-
plement adaptive application steering through real-time, on-
line modeling feedback, such a time consuming approach is
infeasible.

Other researchers use analytic techniques to predict load

balancing performance. Ghosh, et al. [15] derive techniques
useful for predicting the degree of imbalance remaining af-
ter a particular load balancing cycle. Work done at Los
Alamos National Laboratory [20, 19, 21] and at the San
Diego Supercomputing Center [24] have developed analytic
models similar to what we describe here for the purposes of
predicting and evaluating application performance on newly
installed parallel machines or for predicting end-to-end ap-
plication performance [12]. While we follow similar tech-
niques in developing our model, we tackle the challenging
problem of modeling dynamic and adaptive load balancing.

9. Conclusions

We have outlined an analytic technique which allows us
to model applications with generalized task weight distri-
butions in the presence of dynamic load balancing. We are
then able to use the model in conjunction with the PREMA
runtime toolkit to optimize application performance. We
have demonstrated the effectiveness of our modeling and
software technology using a synthetic micro-benchmark
and a parallel mesh generation application. Through a com-
parison with several tools prevalent in the field today, we
show that our methodology provides significant perfor-
mance benefits to the user.



10.

Acknowledgements

This work was performed [in part] using the Sciclone
computational facilities at the College of William and Mary.
In addition, we wish to thank Andrey Chernikov for his
work in developing the Parallel Constrained Delaunay Tri-
angulation program used in this work.

References

[1]

[2]

(3]

[4]

[5]

[6]

[7]

(8]

(9]

[10]

[11]

[12]

[13]

I. Ahmad, A. Ghafoor, K. Mehrotra, and C. Mohan. Perfor-
mance modeling of load balancing algorithms using neural
networks. Concurrency; Practice and Experience, 6(5):393—
409, 1994,

K. Barker. Runtime Support for Load Balancing of Parallel
Adaptive and Irregular Applications. PhD thesis, College of
William and Mary, April 2004.

K. Barker and N. Chrisochoides. An evaluation of a frame-
work for the dynamic load balancing of highly adaptive and
irregular applications. In Proc. of the IEEE/ACM SC'03,
2003.

K. Barker, N. Chrisochoides, and K. Pingali. A load bal-
ancing framework for adaptive and asynchronous applica-
tions. IEEE Trans. on Parallel and Distributed Computing,
15(2):77-101, February 2004.

J. Booth. Balancing priorities and load for state space search
on large parallel machines. Master’s thesis, University of Illi-
nois at Urbana-Champaign, 2003.

A. Brunstrom and R. Simha. Dynamic versus static load bal-
ancing in a pipeline computation. Intern. Journal of Model-
ing and Smulation, 17(4):317-327, 1997.

T. Cheatham, A. Fahmy, D. Stefanescu, and L. Valiant. Bulk
synchronous parallel computing — a paradigm for trans-
portable software. In Proc. of the 28th Annual Hawaii Con-
ference on System Sciences, volume 1l. IEEE Computer So-
ciety Press, January 1995.

A. Chernikov, N. Chrisochoides, and K. Barker. Parallel pro-
gramming environment for mesh generation. In Proceedings
of 8th International Conference on Numerical Grid Genera-
tion, Honolulu, Hawaii, 2002.

L. Chew. Constrained delaunay triangulations. Algorihmica,
4:97-108, 1989.

N. Chrisochoides, P. Chew, and F. Sukup. Parallel con-
strained delaunay meshing. In 1997 Symposium on Trends
in Unstructured Mesh Generation, pages 89-96, June 1997.
G. Cybenko. Dynamic load balancing for distributed mem-
ory multiprocessors. Journal of Parallel and Distributed
Computing, 7(2):279-301, 1989.

E. Deelman, A. Dube, A. Hoisie, Y. Luo, R. Oliver,
D. Sundaram-Stukel, and H. Wasserman. Poems: End-to-
end performance design of large parallel adaptive compua-
tional systems. In Proc. of the First International Workshop
on Software Performance, pages 18—30, October 1998.

R. Esser, J. Janneck, and M. Naedele. Applying an object-
oriented petri net language to heterogeneous systems design.
In Proc. of the Workshop on Petri Nets in Systems Engineer-
ing, September 1997.

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

W. Gautschi. Numerical Analysis. An Introduction.
Birkhduser, Boston, 1997.

B. Ghosh, F. Leighton, B. Maggs, S. Muthukrishnan,
C. Plaxton, R. Rajaraman, A. Richa, R. Tarjan, and D. Zuck-
erman. Tight analyses of two local load balancing algo-
rithms. In Proc. of the 27th Annual ACM Symp. on The-
ory of Comput., pages 548-558, May 1995.

L. Kalé, M. Bhandarkar, and R. Brunner. Load balancing in
parallel molecular dynamics. In Fifth International Sympo-
siumon Solving Irregularly Structured Problemsin Parallel,
volume 1457 of Lecture Notes in Computer Science, pages
25177, 1998.

L. Kalé, M. Bhandarkar, and R. Brunner. Run-time sup-
port for adaptive load balancing. In J. Rolim, editor, Lecture
Notesin Computer Science, Proceedings of 4th Workshop on
Runtime Systems for Parallel Programming (RTSPP) Can-
cun, Mexico, volume 1800, pages 1152—1159, March 2000.
G. Karypis and V. Kumar. ParMETIS: Parallel graph pari-
tioning and sparse matrix ordering library. Technical Re-
port 97-060, Dept. of Computer Science, Univ. of Minnesota,
1997.

D. Kerbyson, A. Hoisie, and H. Wasserman. Modeling the
performance of large-scale systems. |IEEE Proceedings on
Software, 150(4):214—221, August 2003.

D. Kerbyson, A. Hoisie, and H. Wasserman. \erifying Large-
Scale System Performance During Installation Using Model -
ing. Kluwer, September 2003.

D. Kerbyson, A. Hoisie, and H. Wasserman. Use of predic-
tive performance modeling during large-scale system instal-
lation. To appear in Parallel Processing Letters, 2005.

M. Mitzenmacher. On the analysis of randomized load bal-
ancing schemes. In ACM Symposium on Parallel Algorithms
and Architectures, pages 292—-301, 1997.

L. Nyland, J. Prins, R. H. Yun, J. Hermans, H. Kum, and
L. Wang. Modeling dynamic load balancing in molecular
dynamics to achieve scalable parallel execution. In Work-
shop on Parallel Algorithmsfor Irregularly Structured Prob-
lems, pages 356—365, 1998.

A. Snavely, N. Wolter, and L. Cartington. Modeling appli-
cation performance by convolving machine signatures with
application profiles. In |EEE 4th Annual Workshop on Work-
load Characterization, Austin, Texas, December 2001.

C. Xu, B. Monien, R. Liiling, and F. Lau. An analytical com-
parison of nearest neighbor algorithms for load balancing in
parallel computers. In Proc. of 9th Intern. Parallel Process-
ing Symposium, pages 472—479, 1995.



